数的処理実践解法講座 第1回 <解説編>

[No. 1] 正答 4

問題で与えられた命題およびその対偶を、それぞれ論理式で表すと、次のようになる。

(もと) (対偶) $A \to (B \land C) \qquad (\overline{B} \lor \overline{C}) \to \overline{A}$ $\overline{A} \to (\overline{D} \land \overline{E}) \qquad (D \lor E) \to A$ $(\overline{F} \land \overline{G}) \to \overline{C} \qquad C \to (F \lor G)$

さらに、最初の命題と2番目の命題は分割することができるので分割した形で表し、さらに 各命題に番号を付けると次のようになる。

(45)	(対偶)
$A \Rightarrow B \cdots $	$\overline{B} \Rightarrow \overline{A} \cdots \cdots \textcircled{6}$
$A \Rightarrow C \cdots 2$	$\overline{C} \Rightarrow \overline{A} \cdots $
$\overline{A} \Rightarrow \overline{D}$ ③	$D \Rightarrow A \cdots \cdots \otimes$
$\overline{A} \Rightarrow \overline{E} \cdots \textcircled{4}$	$E \Rightarrow A \cdots 9$
$(\overline{F} \wedge \overline{G}) \Rightarrow \overline{C} \cdots \overline{S}$	$C \Rightarrow (F \lor G) \cdots \emptyset$

これらの命題から、三段論法を用いてア〜エの命題が成立するかどうかを調べていく。

- (r) ⑧および②の命題から $[D \rightarrow C]$ が成立するので、確実にいえる。
- (イ) ⑨および①の命題から「E ⇒ B」が成立するので、確実にいえる。
- (ウ) ①より「 $A \to B$ 」,また②および⑩より「 $A \to (F \lor G)$ 」となるが,これは「 $A \to (F \land G)$ 」とは意味が異なっているので,確実にはいえない。
- (エ) (x) (x)

したがって、確実にいえるもののみをすべて挙げているのは選択肢4である。

[No. 2] 正答 4

条件アより、A は F より北側で、A と F の間には 2 人いることになる。また、条件イより、B、C、D の 3 人について、北から順に「 $C \rightarrow D \rightarrow B$ 」となっていることもわかる。さらに、条件 ウより、E より南側の市民農園を利用している人は 4 人以下であり、ここから、E は南から数 えて 5 番目(北から数えて $3 \sim 7$ 番目)までの区画を利用していることになるが、条件エより G が利用しているのは北から数えて 3 番目の区画ということになるので、E は北から数えて $4 \sim 7$

番目のいずれかの区画を利用していることになる。

以上のことから、AとFが入る区画によって、場合分けを行って考える。ただし、以下の表では、便宜上左側を「北」とし、北から順に 1~7番の番号をつけている。

① Aが1番、Fが4番に入る場合には、次の3通りがある。

1番	2番	3番	4番	5番	6番	7番
А	С	G	F	Е	D	В
А	С	G	F	D	Е	В
А	С	G	F	D	В	Е

② Aが2番、Fが5番に入る場合には、次の3通りがある。

1番	2番	3番	4番	5番	6番	7番
С	А	G	Е	F	D	В
С	А	G	D	F	Е	В
С	А	G	D	F	В	Е

③ Aが4番、Fが7番に入る場合には、次の2通りがある。

1番	2番	3番	4番	5番	6番	7番
С	D	G	А	Е	В	F
С	D	G	А	В	Е	F

以上のことから、確実にいえるのは選択肢4である。

[No. 3] 正答 5

人物,学部,サークルの3集合対応であるので,「連結対応表」を作成し,条件にしたがって埋めていくと,下表のようになる。ただし,矢印で結ばれている列どうしは,それぞれ同一人物が該当することを表している。

				\downarrow	▼	<u> </u>			→	
	文	法	経	工	医	サ	テ	美	合	将
А	×		×				×	×		×
В	×	×	0	×	×	×	×	×	×	0
С	0	×	×	×	×			×		×
D	×		×							×
Е	×		×							×

Cは工学部および医学部ではないので、サッカーサークルおよび合唱サークルには所属して

いないことになる。したがって、C はテニスサークルに所属しているとわかる。

									_	
	文	法	経	エ	医	サ	テ	美	合	将
А	×		×				×	×		×
В	×	×	0	×	×	×	×	×	×	0
С	0	×	×	×	×	×	0	×	×	×
D	×		×				×			×
Е	×		×				×			×

ここで、サッカーサークルおよび合唱サークルに所属しているのは工学部および医学部の学生であるので、法学部の学生はこれらの2つのサークルには所属していないことになる。したがって、法学部の学生は美術サークルに所属していることになる。

				\downarrow	√	<u> </u>			_	
	文	法	経	工	医	サ	テ	美	合	将
А	×		×				×	×		×
В	×	×	0	×	×	×	×	×	×	0
С	0	×	×	×	×	×	0	×	×	×
D	×		×				×			×
Е	×		×				×			×
		1								

与えられた条件からは、これ以上の部分は判明しない。しかし、この時点で選択肢 5 は確実にいえる。

[No. 4] 正答 3

ある職場の職員を、性別について「男性と女性」、通勤手段について「電車通勤とそれ以外」、 通勤時間について「1時間以上と1時間未満」という、異なる3つの基準によってそれぞれ2 分割して考える問題であるので、キャロル表を用いて解くとよい。

条件より、判明している数値についてキャロル表の中に記入してみると、次のようになる。 ただし、通勤時間が1時間未満の女性のうち、電車通勤していない者の人数をx、また数値または未知数および式の記入がない部分は、それぞれ①~③としている。

		性 6)		性 4)
1時間未満 (63)	15	2	x+9 —36—	x
1時間以上	24	3		11
	∠ 4			11

内:電車連勤

外:それ以外

まず表中のxについて、女性の合計が54人であるから、そこから「電車通勤している36人」と「電車通勤していない11人」を合わせて引けば求められ、その人数は7人である。よって、「通勤時間が1時間以上で電車通勤している女性(すなわちx+9)」の人数は16人である。以下、①の部分は36-16=20(人)、②の部分は63-(15+16+7)=25(人)、③の部分は96-(15+25+24)=32(人)となる。

		性 6)		性 4)
1時間未満 (63)	15	25	16	7
1時間以上	24	32	—36— 20	11

内:電車通勤

外:それ以外

以上より、確実にいえるものは選択肢3である。

[No. 5] 正答 2

各発言にしたがって、A~E の到着した順序を不等号を用いて表すと、次のようになる。ただし、「A<D」とある場合、AがDより早く着いたことを意味しているものとする。

発言ア E<A<D

発言イ D<C<A

発言ウ B<D<E

発言エ C<E<A

これらの発言のうち一つだけが誤りだということは、残りの3つの発言は正しいはずであるので、「誤りである発言を仮定」した上で、「正しいと仮定された3つの発言に基づいて順序関係を調べ、矛盾が発生するかどうか」で判定していけばよい。

(i) 発言アが誤りであると仮定した場合

イ,ウ,エの発言はそれぞれ正しいはずであるので、これらの発言から順序関係を考えると、「B<D<C<E<A」の場合に矛盾が発生しない。よって、この場合はありうる。

(ii) 発言イが誤りであると仮定した場合

ア,ウ,エの発言はそれぞれ正しいはずであるが、アの発言から「E<D」となり、一方でウの発言より「D<E」となり矛盾する。よって、この場合はありえない。

(iii) 発言ウが誤りであると仮定した場合

ア,イ,エの発言はそれぞれ正しいはずであるが,アの発言から「A<D」となり,一方でイの発言より「D<A」となり矛盾する。よって,この場合もありえない。

(iv) 発言工が誤りであると仮定した場合

ア,イ,ウの発言はそれぞれ正しいはずであるが、(iii)と同様にアの発言から「A<D」となり、一方でイの発言より「D<A」となり矛盾する。よって、この場合もありえない。よって、発言アが誤りであると確定し、到着順は「B<D<C<E<A」となる。したがって、確実にいえるものは選択肢2である。

「No. 6] 正答 **5**

利息額の計算方法について、「1年ごとの単利」とは、当初預金した元本(本間では100万円)に対して毎年の利息が生じる計算方法をいい、「1年ごとの複利」とは、1年目は当初預金した元本に対して利息が生じるが、2年目は「元本+1年目の利息」を新たな元本として(つまり元本が利息の分だけ増加した金額に対して)利息が生じるような計算方法をいう。この計算方法にしたがって、満期時の金額をそれぞれ計算してみればよい。

- $A \rightarrow 100$ 万円+(100 万円×1.5%)×4 年間=100 万円+1.5 万円×4=106 万円
- B \rightarrow 100 万円×1.020×1.020×1.020=100 万円×1.061208=106.1208 万円
- $C \rightarrow 100$ 万円×1.030×1.030=100 万円×1.0609=106.09 万円

よって、受け取る利息額は A が 60,000 円、B が 61,208 円、C が 60,900 円となり、その大小関係は「A < C < B」である。したがって、正しいものは選択肢 5 である。

[No. 7] 正答 3

条件アより、A は 8km 走ったところで先頭の選手とすれ違っているが、このとき、先頭の選手は、A より先に折り返してから 2km 進んだところ(つまりゴールまで 8km)にいることになる。したがって、先頭の選手はこの時点で 12km 進んでいることになるので、A と先頭の選手との速さの比は8:12=2:3となる。

同様に,条件イより,Bが8km走る間に先頭の選手は18km走っているので,Bと先頭の選手との速さの比は8:18=4:9となる。

これら2つの比より、Aの速さとBの速さの比を求めることができる。